Power-Commutative Nilpotent R-Powered Groups

نویسندگان

  • Stephen Majewicz
  • Marcos Zyman
چکیده

If R is a binomial ring, then a nilpotent R-powered group G is termed power-commutative if for any α ∈ R, [gα, h] = 1 implies [g, h] = 1 whenever gα 6= 1. In this paper, we further contribute to the theory of nilpotent R-powered groups. In particular, we prove that if G is a nilpotent R-powered group of finite type which is not of finite π-type for any prime π ∈ R, then G is PC if and only if it is an abelian R-group.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NILPOTENT GRAPHS OF MATRIX ALGEBRAS

Let $R$ be a ring with unity. The undirected nilpotent graph of $R$, denoted by $Gamma_N(R)$, is a graph with vertex set ~$Z_N(R)^* = {0neq x in R | xy in N(R) for some y in R^*}$, and two distinct vertices $x$ and $y$ are adjacent if and only if $xy in N(R)$, or equivalently, $yx in N(R)$, where $N(R)$ denoted the nilpotent elements of $R$. Recently, it has been proved that if $R$ is a left A...

متن کامل

On the power-commutative kernel of locally nilpotent groups

A group G is called power commutative, or a PC-group, if [xm, yn] = 1 implies [x, y] = 1 for all x, y ∈G such that xm = 1, yn = 1. So power-commutative groups are those groups in which commutativity of nontrivial powers of two elements implies commutativity of the two elements. Clearly, G is a PC-group if and only if CG(x) = CG(x) for all x ∈ G and all integers n such that xn = 1. Obvious examp...

متن کامل

Group rings satisfying generalized Engel conditions

Let R be a commutative ring with unity of characteristic r≥0 and G be a locally finite group. For each x and y in the group ring RG define [x,y]=xy-yx and inductively via [x ,_( n+1)  y]=[[x ,_( n)  y]  , y]. In this paper we show that necessary and sufficient conditions for RG to satisfies [x^m(x,y)   ,_( n(x,y))  y]=0 is: 1) if r is a power of a prime p, then G is a locally nilpotent group an...

متن کامل

Using the Mal’cev correspondence for collection in polycyclic groups

We describe several approaches for realizing the Mal’cev correspondence between Q-powered nilpotent groups and nilpotent Lie algebras over Q. We apply it to fast collection in polycyclic groups. Our methods are fully implemented and publicly available. We report on the implementation and give runtimes for some example groups.

متن کامل

The Isomorphism Relation Between Tree-Automatic Structures

An ω-tree-automatic structure is a relational structure whose domain and relations are accepted by Muller or Rabin tree automata. We investigate in this paper the isomorphism problem for ω-tree-automatic structures. We prove first that the isomorphism relation for ω-treeautomatic boolean algebras (respectively, partial orders, rings, commutative rings, non commutative rings, non commutative gro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Groups Complexity Cryptology

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2009